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Abstract
This study presents a comprehensive benchmarking of three state-
of-the-art single-cell foundation models scGPT, Geneformer, and
scFoundation, on cell-type classification tasks. We evaluate the
models on three datasets: myeloid, human pancreas, and multiple
sclerosis, examining both standard fine-tuning and few-shot learn-
ing scenarios. Our work reveals that scFoundation consistently
achieves the best performance while Geneformer performs poorly,
yielding results sometimes even worse than those of the baseline
models. Additionally, we demonstrate that a good foundation model
can generalize well even when fine-tuned with out-of-distribution
data, a capability that the baseline models lack. Our work high-
lights the potential of foundation models for addressing challenging
biomedical questions, particularly in contexts where models are
trained on one population but deployed on another.
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1 Introduction
The rapid advancement of single-cell RNA sequencing (scRNA-
seq) technologies has led to an unprecedented abundance of high-
dimensional gene expression data. This explosion of data has cre-
ated a unique opportunity for the development of biological founda-
tion models, which are large-scale, pre-trained models that can be
fine-tuned for a variety of downstream tasks. Several recent models,
including scGPT [2], Geneformer [5], and scFoundation [3], have
demonstrated state-of-the-art performance across diverse tasks. In
this study we evaluate the performance of these models, focusing
on three core aspects: (i) Rigorous Benchmarking: We bench-
mark the cell-type classification performance of these three models
using a consistent set of publicly available datasets: Myeloid, MS
(Multiple Sclerosis), and hPancreas [2].
(ii) Out-of-Distribution Learning:We design experiments to test
whether foundation models trained on large dataset of healthy
samples exhibit advantages when learning from out-of-distribution
(OOD) data, which is common in real-world medical contexts where
downstream tasks (testing data) involve patient samples.
(iii) Few-Shot Learning Evaluation: Since Kedzierska et al. [4]
found limited model performance in zero-shot settings, we assess
these models’ capacity for few-shot learning.

2 Experiments and Results
Benchmarking Study:We started by reproducing the cell-type
classification task from scGPT. We compared the performance of
our scGPT implementation with the original scGPT [2] and the
results reported by Boiarsky et al. [1]. We find that our results
are marginally better and largely consistent with those of previ-
ous studies across all three datasets (data not shown). We then
carried out rigorous benchmarking experiments to compare three
foundation models and two baseline models. As shown in Table 1,
scFoundation consistently achieved the highest performance
across all three datasets. scGPT performed second among the
three foundation models, with an F1 score surpassing the baseline
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Dataset Model Type Accuracy Precision Recall Macro F1

Myeloid

scGPT 0.630 ± 0.034 0.376 ± 0.018 0.345 ± 0.019 0.351 ± 0.020
Geneformer 0.626 ± 0.021 0.362 ± 0.007 0.329 ± 0.008 0.369 ± 0.011
scFoundation 0.664 ± 0.018 0.401 ± 0.013 0.381 ± 0.015 0.387 ± 0.013
Logistic Regression 0.645 ± 0.003 0.384 ± 0.008 0.358 ± 0.006 0.367 ± 0.007
XGBoost 0.648 ± 0.026 0.387 ± 0.019 0.380 ± 0.021 0.379 ± 0.021

MS

scGPT 0.872 ± 0.014 0.722 ± 0.041 0.727 ± 0.030 0.714 ± 0.029
Geneformer 0.765 ± 0.137 0.648 ± 0.007 0.664 ± 0.006 0.646 ± 0.005
scFoundation 0.857 ± 0.010 0.743 ± 0.033 0.746 ± 0.037 0.747 ± 0.028
Logistic Regression 0.819 ± 0.004 0.706 ± 0.003 0.713 ± 0.012 0.696 ± 0.011
XGBoost 0.813 ± 0.002 0.709 ± 0.004 0.671 ± 0.005 0.649 ± 0.008

hPancreas

scGPT 0.949 ± 0.042 0.899 ± 0.052 0.871 ± 0.063 0.865 ± 0.062
Geneformer 0.924 ± 0.016 0.580 ± 0.017 0.545 ± 0.025 0.652 ± 0.042
scFoundation 0.982 ± 0.012 0.927 ± 0.012 0.955 ± 0.012 0.930 ± 0.011
Logistic Regression 0.964 ± 0.002 0.747 ± 0.004 0.784 ± 0.002 0.755 ± 0.004
XGBoost 0.971 ± 0.003 0.930 ± 0.004 0.936 ± 0.009 0.921 ± 0.008

Table 1: Cell-type classification performance: scFoundation
leads all models, while Geneformer performs the worst.

models in half of the cases. In contrast, Geneformer consistently
exhibited the lowest performance among all foundation models,
showing comparable or worse performance than the baseline mod-
els. We attribute the superior performance of scFoundation to its
model design, which retains the continuity of gene expression val-
ues, unlike the binning and ranking approaches used by scGPT and
Geneformer.
Evaluation on Out-of-Distribution and In-Distribution Data:
To investigate our hypothesis that a well-performing foundation
model exhibits advantages over baseline models in learning from
OOD data, where the training set consists only of healthy controls
and the testing set includes exclusively patients, we derived two
in-distribution datasets from the out-of-distribution MS dataset. (i)
Simple mixed: The MS dataset was partitioned into four subsets
using stratified sampling: A and B with healthy controls, and C
and D with MS patients. We then formed new training and test
sets by combining A with C and B with D, respectively; (ii) 5-
fold CV: A unified dataset was formed by combining the original
train and test sets, followed by 5-fold cross-validation to generate
five distinct mixed training and test sets. As predicted by our hy-
pothesis, we observed that the performance of the baseline
models or a weak foundation model improves a lot while a
good foundation model has less improvement when chang-
ing from OOD to in-distribution dataset. For instance, in the
simple mixed in-distribution dataset, XGBoost achieved a macro F1
score of 0.771 (Table 2), which is 18.8% increase compared to the
F1 of 0.649 from the OOD dataset (Table 1). A weaker foundation
model such as Geneformer also showed a 16.4% improvement. In
contrast, the good foundation model, scFoundation, only improved
7.5% from 0.747 to 0.803. We observed similar trends from the 5-fold
CV in-distribution dataset. We noticed an exception with the scGPT
model.The performance of scGPT showed a significant improve-
ment of 16.5%, comparable to the enhancements seen with XGBoost
and Geneformer. We hypothesize that this is because, unlike other
foundation models, we fine-tuned scGPT without freezing the pre-
trained model parameters, as recommended by the scGPT paper.
Therefore this setup does not represent a fair comparison for scGPT.
Next we plan to fine-tune scGPT with frozen parameters.
Few-Shot Evaluation: Table 3 compared the performance of five
models across all three datasets. Model performance generally im-
proved as the number of samples increased. For the Myeloid dataset,

Dataset Model Type Accuracy Precision Recall Macro F1

Simple mixed

scGPT 0.886 ± 0.011 0.835 ± 0.015 0.837 ± 0.012 0.832 ± 0.011
Geneformer 0.830 ± 0.004 0.778 ± 0.011 0.746 ± 0.009 0.752 ± 0.006
scFoundation 0.863 ± 0.017 0.852 ± 0.009 0.792 ± 0.013 0.803 ± 0.017

Logistic Regression 0.872 ± 0.000 0.798 ± 0.000 0.773 ± 0.000 0.777 ± 0.000
XGBoost 0.859 ± 0.029 0.871 ± 0.005 0.756 ± 0.004 0.771 ± 0.007

scGPT 0.898±0.006 0.871±0.011 0.855±0.018 0.854±0.011
Geneformer 0.864 ± 0.004 0.822 ± 0.028 0.788 ± 0.0.010 0.793 ± 0.012

5-fold cross scFoundation 0.877 ± 0.004 0.852 ± 0.003 0.802±0.003 0.812±0.006
validation Logistic Regression 0.873 ± 0.002 0.805 ± 0.007 0.788 ± 0.012 0.792 ± 0.011

XGBoost 0.889±0.047 0.872±0.021 0.789±0.006 0.802±0.009

Table 2: Model performance on in-distribution MS dataset.

scFoundation consistently performed the best across all few-shot
settings, while no clear leader emerged for the other two datasets.
Geneformer exhibited the worst performace in all few-shot sce-
narios. Interestingly, in two cases, the 50-shot experiments outper-
formed the experiments using the full dataset. For instance, with
the scGPT model on the MS dataset, the macro F1 scores were 0.731
(50-shot) and 0.714 (full dataset). We reason that this is because
our datasets are extremely imbalanced and we used an oversam-
pling strategy for the underrepresented class, which biased the
50-shot result. In the future, using a fraction of the entire sample
size, rather than an absolute number of training samples, may be a
good alternative to assess the few-shot learning capability.

k-shot Model type Myeloid MS hPancreas

5

scGPT 0.230 ± 0.041 0.364 ± 0.173 0.259 ± 0.076
Geneformer 0.005 ± 0.017 0.010 ± 0.000 0.034 ± 0.014
scFoundation 0.299 ± 0.062 0.538 ± 0.030 0.649 ± 0.049

Logistic Regression 0.268 ± 0.016 0.535 ± 0.017 0.721 ± 0.025
XGBoost 0.261 ± 0.016 0.405 ± 0.030 0.695 ± 0.056

50

scGPT 0.305 ± 0.018 0.731 ± 0.014 0.677 ± 0.039
Geneformer 0.195 ± 0.030 0.055 ± 0.030 0.364 ± 0.125
scFoundation 0.338 ± 0.030 0.691 ± 0.011 0.751 ± 0.024

Logistic Regression 0.323 ± 0.007 0.660 ± 0.008 0.777 ± 0.009
XGBoost 0.316 ± 0.008 0.646 ± 0.003 0.828 ± 0.037

Table 3: Performance comparison in few-shot settings based
on Macro-F1 scores.
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