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Abstract

Large Language Models (LLMs) recently
achieved great success in medical text sum-
marization by simply using in-context learn-
ing. However, these recent efforts do not per-
form fine-grained evaluations under difficult
settings where LLMs might fail. They typi-
cally report performance scores over the en-
tire dataset. Through our benchmarking study,
we show that LLMs show a significant perfor-
mance drop for data points with high concentra-
tion of out-of-vocabulary (OOV) words or with
high novelty. Vocabulary adaptation is an intu-
itive solution to this vocabulary mismatch issue
where the LLM vocabulary gets updated with
certain expert domain (here, medical) words
or subwords. An interesting finding from our
study is that Llama-3.1, even with a vocabulary
size of around 128K tokens, still faces over-
fragmentation issue with medical words. To
that end, we show vocabulary adaptation helps
improve the LLM summarization performance
even in difficult settings. Through extensive
experimentation of multiple vocabulary adapta-
tion strategies, two continual pretraining strate-
gies, and three benchmark medical summariza-
tion datasets, we gain valuable insights into the
role of vocabulary adaptation strategies for cus-
tomizing LLMs to the medical domain. We also
performed a human evaluation study with med-
ical experts where they found that vocabulary
adaptation results in more relevant and faithful
summaries. Our codebase is made publicly
available at https://github.com/gb-kgp/
LLM-MedicalSummarization-Benchmark.

1 Introduction

Recent works like Clinsumm (Van Veen et al.,
2024) explore various strategies to adapt LLMs
in the task of medical text summarization. These
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(b) Methods
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(c) Datasets
BioASQEBMPubMedQA

(e) Evaluation Subset

SD: Source Document || RS: Reference Summary

ScafFix

MEDVOC-LLM

AllRS and AllSD 
High Medical OOV Concentration

(split more than once)
RS and SD

DifficultRS and DifficultSD 
High Medical OOV Concentration

(split more than thrice)
RS and SD

NovelRS 
High novel unigram concentration in RS 

(unigrams in RS not present in SD)

Vocabulary Adaptation Strategies

Creation of candidate vocabulary

Selection from candidate vocabulary
using a utility function

Training the added vocabulary 
embeddings using Continual

Pretraining

(d) Continual Pretraining Strategy

End-to-End Two-Stage

Mistral-7B

Qwen-2-7B

Figure 1: We present the benchmarking setup for our
fine-grained evaluation of LLMs in high OOV and high
novelty setting for medical text summarization. Our
benchmarking setup: (a) tests four recent mainstream
SoTA models; (b) on three vocabulary adaptation meth-
ods; (c) using three query-focused medical summariza-
tion dataset; (d) over two continual pretraining proce-
dures; (e) evaluated in five fine-grained scenarios based
on OOV (Out-Of-Vocabulary) and Novel unigram con-
centration in SD (Source Document) and RS (Refer-
ence Summary) respectively. So, in total we evaluated
4× 3× 3× 2× 5 = 360 combinations.

strategies are (i) in-context learning (Brown et al.,
2020; Lampinen et al., 2022) where a fixed num-
ber of exemplars is added in the prompt at infer-
ence time only; and (ii) parameter-efficient fine-
tuning using QLoRA (Dettmers et al., 2024) be-
cause LLMs have billions of parameters which
make complete finetuning computationally infea-
sible. However, these studies do not perform fine-
grained evaluations considering challenging gen-
eration scenarios and typically report performance
scores over the entire dataset. In this paper, we
consider two such challenging scenarios primarily
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related to the high vocabulary mismatch between
LLM vocabulary and the medical domain. Figure 1
provides an overview of our benchmarking setup.

We note that LLMs during tokenization typically
over-fragment (important) medical words, resulting
in higher OOV concentration (proportion of words
that are split into more than one token by an LLM
tokenizer) compared to the generic open-domain
text (e.g., news domain). In this work, we focus
on the ‘BASE’ model variants of four open-source,
open-domain LLMs called Llama-2 (Touvron et al.,
2023), Mistal (Jiang et al., 2023), Qwen2 (Yang
et al., 2024) and Llama-3.1 (Dubey et al., 2024).
Llama-3.1 and Qwen2 has a much larger vocabu-
lary size of 128K and 151K tokens, which is sig-
nificantly larger than Llama-2 and Mistral (almost
four times), which have a vocabulary size of around
32K. Therefore, it would be interesting to investi-
gate whether vocabulary adaptation still helps to
improve Llama-3.1 and Qwen2. We observe in Ta-
ble 1, that there is an increase of 17.89%, 20.25%,
14.06%, and 13.08% in fragment score (Rust et al.,
2021) when comparing tokenization of words from
the open domain with the medical domain using
Llama-2, Mistral, Qwen2, and Llama-3.1 tokeniz-
ers. This over-fragmentation affects the encoding
stage as the semantic meaning is lost due to poor
tokenization (Hofmann et al., 2022) and during gen-
eration, the model has to generate more subwords
to generate a medical word. Examples of words
that are over-fragmented is shown in Table 2. Ad-
ditionally, summarization datasets in the medical
domain being from a specialized domain contain
words in reference summaries (like disease names)
which do not occur directly in the source document
but require domain-knowledge to be inferred from
the source document (novel words).

Vocabulary expansion is a potential solution
for such domain adaptation challenges that pri-
marily arise due to vocabulary mismatch between
the LLM vocabulary and the target expert-domain
tasks. In this process, the model’s vocabulary is
expanded by incorporating tokens from the target
domain that are not originally included in the main
vocabulary. It has shown good performance for
encoder-only models like BERT, RoBERTa on clas-
sification tasks (Hofmann et al., 2022; Lamproudis
et al., 2022; Xu et al., 2023) and encoder-decoder
models like BART, PEGASUS, and Transformers-
Large on summarization and machine translation
tasks (Xu et al., 2021; Nag et al., 2023; Balde et al.,
2024b; Nag et al., 2024). Recent works are ex-

CNN-DM PAC
Llama-2

Fragment Score 1.23 1.45
Split> 3 21% 35%

Mistral
Fragment Score 1.17 1.41
Split> 3 21% 34%

Llama-3.1
Fragment Score 1.07 1.21
Split> 3 12% 25%

Qwen-2
Fragment Score 1.28 1.46
Split> 3 17% 28%

Table 1: OOV concentration and fragment score ob-
served for general domain dataset (CNN-DailyMail)
and medical domain dataset (PAC) obtained using to-
kenizers of models: Llama-2 and Mistral (Vocabulary
size: 32K), and Llama-3.1 and Qwen-2 (Vocabulary
size: 128K and 151K). Fragment score (Rust et al.,
2021) is the average number of subwords a word is tok-
enized into; and Split> 3 is the fraction of words split
more than thrice. We note that for all the model tokeniz-
ers, irrespective of the vocabulary size, medical domain
words are over-fragmented leading to higher fragment
score (highlighted in bold), compared to general do-
main.

ploring vocabulary adaptation strategies for LLMs
and proves useful for multilingual use-cases on
models like Llama such as (Liu et al., 2023; Cui
et al., 2024b,a; Liu et al., 2024; Gao et al., 2024;
Nag et al., 2024; Tejaswi et al., 2024; Yamaguchi
et al., 2024). However, these studies primarily fo-
cus on languages other than English, which are
relatively underrepresented in the pretraining cor-
pus of LLMs.

We make the following contributions:

• We investigate vocabulary adaptation strate-
gies in using LLMs on tasks from the expert
(medical) domain. Instead of evaluating a mul-
tilingual setting, we address a vocabulary mis-
match within the same language (English).

• We perform a benchmarking study on medical
text summarization with various vocabulary
adaptation strategies tailored for LLMs. We
perform fine-grained evaluation of LLMs in
high OOV and high novelty settings (Table 6).

• We conduct a human evaluation study with
experts who also found that vocabulary adap-
tation produces more relevant, coherent and
faithful summaries (Figure 3).
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Medical
Term

Llama-2 Llama-3.1

High OOV
cardiomyopathy ‘_card’, ‘iom’,

‘y’, ‘op’, ‘ath’,
‘y’

‘card’, ‘i’,
‘omy’, ‘opa-
thy’

antipyretics ‘_ant’, ‘ip’, ‘y’,
‘ret’, ‘ics’

‘ant’, ‘ipy’,
‘ret’, ‘ics’

High novelty
corticosteroid ‘_cort’, ‘ic’, ‘ost’,

‘ero’, ‘id’
‘c’, ‘ortic’, ‘os-
ter’, ‘oid’

antidepressant ‘_ant’, ‘ide’,
‘press’, ‘ants’

‘ant’, ‘ide-
press’, ‘ants’

Table 2: Medical terms from reference summary of
PubMedQA dataset with high OOV concentration
(DifficultRS) and high novelty (NovelRS).

2 Benchmarking Vocabulary Adaptation
Strategies for LLMs

A vocabulary adaptation technique consists of three
steps: (i) generating candidate vocabulary tokens
from target downstream datasets, (ii) selecting im-
portant vocabulary tokens from candidate set using
some utility function (e.g., fragment score (Hong
et al., 2021), corpus entropy (Xu et al., 2021)) to
form added vocabulary, and (iii) learning the em-
beddings of the added vocabulary and integration
into LLM. In this work, we benchmarking the ef-
fect of all the three steps,combing the effect of first
two steps: constructing the vocabulary and adding
candidate tokens from the target domain to finalize
the vocabulary for integration into the LLM as one,
and then checking effect of last step: on how to
train the embeddings.

2.1 Vocabulary Adaptation Methods

We consider two types of datasets while construct-
ing the vocabularies to be added to the PLM vo-
cabulary: (i) PubMed Abstract Collection (PAC), a
collection of around 300K PubMed abstracts used
for intermediate fine-tuning by MEDVOC (Balde
et al., 2024b), and (ii) Target Task (TGT Task), the
target downstream task dataset for which the vo-
cabulary is to be constructed. We now describe the
different vocabulary adaptation methods used for
our benchmarking study.

MEDVOC. MEDVOC (Balde et al., 2024b) is
a SoTA vocabulary adaptation strategy for adapt-
ing PLMs like BART and PEGASUS, on medical
summarization tasks. First, candidate vocabularies
are constructed on the medical OOV words from a

domain-specific corpus (PAC) – VPAC, and a down-
stream task dataset –VTGT. Then, an optimal vo-
cabulary (VMEDVOC), that lies at the intersection
of VPAC and VTGT is chosen via a hyperparameter
search. The utility function for the hyperparam-
eter search is fragment score (Rust et al., 2021),
defined as the average number of subwords a word
from a corpus C is tokenized into by a tokenizer
using vocabulary V . The vocabulary configuration
within the neighborhood of the optimal vocabu-
lary is finally chosen to avoid overfitting on large
vocabulary sizes.

MEDVOC-LLM. This is a variant of MEDVOC
adapted for LLM vocabularies and tokenizers. We
identify two key issues in MEDVOC: (i) many of
the vocabulary terms added directly from VPAC,
did not occur even once in the reference summaries
of the train set of downstream target task – their
addition did not contribute during generation, and
(ii) certain added vocabulary terms were a mixture
of numerals and punctuations (e.g., -9,) – which
is not consistent 1 with the tokenization scheme
for LLMs considered in this study (Llama-2 and
Llama-3.1). Thus, in this approach, we clean the
vocabularies generated by MEDVOC by removing
the terms from both categories and considering
only the clean set.

Overhead in Previous Vocabulary Adaptation
Strategy. Consider the word ‘cholesterol’, which
is not present in the Llama-3.1 model’s vocabulary
and is tokenized by the Llama-3.1 tokenizer as [cho,
le, sterol]. Since a merge rule operates on pairs of
tokens, we need to iteratively add pairs from left to
right, as shown in Table 3.

Token Merge Rule
‘chole’ [ch, ole]
‘cholesterol’ [chole, sterol]

Table 3: Illustration of iterative addition of tokens to
add a target token ‘cholesterol’ in the vocabulary.

Thus, in order to add ‘cholesterol’ to the vo-
cabulary, we need to add one extra token [chole].
Specifically, for Llama-3.1, we observe an overall
addition of 20% of extra such tokens, which are sel-
dom used once the complete word is added into the
vocabulary. This can lead to reduced performance
in downstream tasks. To that end, we present Scaf-

1Llama tokenizers explicitly set apart digits as individual
tokens (Touvron et al., 2023)
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Fix to address this issue with existing vocabulary
adaptation strategies.

ScafFix. Unlike the vocabulary adaptation strate-
gies described till now, ScafFix constructs the can-
didate set for added vocabulary by directly con-
sidering the medical words and ignores the tok-
enization step for forming candidate subwords. We
directly select x tokens (where x represents the
quota, set to 500 in this case, in steps of 50) from
the candidate vocabulary tokens, ranking them by
their frequency in descending order. We then fol-
low the MEDVOC-based hyperparameter search
optimizing fragment score to obtain the optimal
vocabulary to be added. To offset the absence of
such derivative tokens, we use AdaptBPE tokeniza-
tion scheme (Balde et al., 2024a) instead of the
standard Llama tokenizers. Instead of directly uti-
lizing merge rules, AdaptBPE first checks whether
a part of the input token (using longest-first match)
directly exists in the added vocabulary, preserves
it from splitting, and then runs the merge-based
byte-pair encoding scheme iteratively on the rest of
the input. Here, we avoid including the scaffolding
tokens (Cognetta et al., 2024; Bauwens and Delo-
belle, 2024; Chizhov et al., 2024; Lian et al., 2025)
during the vocabulary addition phase; these are
derivative tokens that remain under-trained once
the whole word is added to the vocabulary.

2.2 Learning the Added Vocabulary
Embeddings using Continued Pretraining

The embedding of the newly added vocabulary is
initialized as the average of the embeddings of the
existing subwords in the vocabulary (Yamaguchi
et al., 2024). We explore two continual pretrain-
ing (Gururangan et al., 2020; Tejaswi et al., 2024;
Yamaguchi et al., 2024) strategies to train these
embeddings on target domain text (20K random
documents from the PubMed Abstract Collection,
in our case). Continual pretraining uses the same
training objective of ‘Next Token Prediction’ as
the autoregressive language modeling objective,
and optimizes the standard negative log-likelihood
loss. We use the popular parameter-efficient fine-
tuning technique known as ‘Low-Rank Adaptors’
(LoRA) (Mangrulkar et al., 2022) because end-to-
end training of LLMs is computationally infeasible.
We explore two continual pretraining strategies:

• End-To-End: The model is trained in an end-
to-end manner by freezing all the base model

Category Description
Categories of Words

Difficult-OOV Medical words that are split more
than thrice by model tokenizers

Novel Words in the summary that are not
present in the source document

All-OOV Medical words that are split more
than once by model tokenizers

Evaluation Setting (Top ten percentile)
DifficultRS High Difficult-OOV concentration

in the reference summaries
DifficultSD High Difficult-OOV concentration

in the source document
NovelRS High Novel concentration in the ref-

erence summaries
AllSD High All-OOV concentration in the

source document
AllRS High All-OOV concentration in the

reference summaries

Table 4: Challenging fine-grained evaluation scenarios
considered in this study. We focus on the subset that
contains high OOV concentration and novelty

layers except the input and output embedding
layers and training LoRA adapters.

• Two-Stage: First, the entire model is frozen
along with the LoRA layers except for the in-
put and output embedding layers for a short
duration, then unfreeze the LoRA adapters
and train the LoRA adapters along with the
embedding layers (Cui et al., 2024b; Yam-
aguchi et al., 2024). The second approach
leads to more stable training and avoids over-
fitting to the initial LLM embedding space.

3 Experimental Setup

We use in-context learning (ICL) (Brown et al.,
2020; Van Veen et al., 2024) along with
greedy decoding for generating summaries from
LLMs. We follow the approach similar to Clin-
Summ (Van Veen et al., 2024), where examples
are sampled from the train set using the similarity
computed using PubMedBERT2 with the given test
data point. The template for prompting is shown
in Appendix A (Table 9). We also describe the
fine-grained evaluation setup used for this bench-
marking study in Table 4.

Next, we describe the benchmark medical text
summarization datasets used, followed by details

2https://huggingface.co/pritamdeka/
PubMedBERT-mnli-snli-scinli-scitail-mednli-stsb
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on evaluation metrics, baseline models, and train-
ing details.

3.1 Datasets

In this work, we focus on three query-focused med-
ical summarization datasets such as BioASQ (Tsat-
saronis et al., 2015), EBM (Mollá and Santiago-
Martinez, 2011), and PubMedQA (Jin et al., 2019).
A data point consists of a Query (Q) and a con-
text (PubMed Abstract) as the input to the model.
The gold-standard reference summary (RS) sum-
marizes the abstract based on the query. We present
the overall dataset characteristics in Table 5.

PubMedQA. PubMedQA is a question-
answering dataset with 1000 human-annotated
data points. Here, input is a query appended
to a PubMed abstract, which forms the source
document. We consider the ‘long answer’ as the
reference summaries.

EBM. In this single-document summarization
task, the input comprises a query paired with a
PubMed abstract. The task is to generate a con-
cise summary that addresses the query, using the
provided abstract as its context.

BioASQ. We use the Phase-B query-focused
summarization task of BioASQ-9B. The input in-
cludes a question along with relevant PubMed ab-
stracts. For the summarization task, we use the
ideal answer as the reference summary. Here, we
explore two variants of a source document — (i)
Snippets (BioASQ-S): the question followed by
the list of relevant snippets from a collection of
PubMed Abstracts, in line with the MEDVOC pa-
per (Balde et al., 2024b), and (ii) BioASQ-Main
Abstract (BioASQ-M): the question followed by
the complete Pubmed abstracts.

3.2 Evaluation Metrics

We evaluate the model-generated summaries us-
ing Rouge-L (R-L) to measure informativeness and
coherence, and Concept-Score (CSr) to measure
faithfulness (Zhang et al., 2023). Concept-Score
measures the overlap of UMLS medical concepts
(computed using QuickUMLS tool (Soldaini and
Goharian, 2016)) between the generated and refer-
ence summaries. We use Rouge-L as the primary
comparison metric, in line with prior studies (Fab-
bri et al., 2021; Yuan et al., 2022; Balde et al.,
2024a,b).

3.3 Baseline Models

The following baseline models do not update the
LLM vocabulary:

• BASE. ‘BASE’ corresponds to the base vari-
ant of original LLM without any vocabulary
adaptation and continual pretraining. We con-
sider 7B variant of Llama-2 (Model id: meta-
llama/Llama-2-7b-hf), Mistral (Model id:
mistralai/Mistral-7B-v0.1), Qwen-2 (Model
id: Qwen/Qwen2-7B), and 8B variant of
Llama-3.1 (Model id: meta-llama/Llama-3.1-
8B) as our BASE models.

• Continual Pretraining (CPT-Only). CPT-
Only corresponds to the original BASE LLM
that has undergone the continual pretraining
(CPT) but without any vocabulary adaptation.
It serves as a strong baseline when comparing
against vocabulary-adapted models.

3.4 Implementation Details

We provide basic details of implementation in
terms of its LoRA implementation, pretraining cor-
pus and training hyperparameters.

Continual Pretraining using LoRA. We use
one A100 40 GB GPU to carry out the pretraining.
We use LoRA (Hu et al., 2022; Mangrulkar et al.,
2022) to carry out the pretraining in this resource-
constrained setting. The LoRA adapters are applied
to all the linear modules in the model. These
include {k_proj, q_proj, v_proj, and o_proj}
modules from self attention layers along with
{gate_proj, up_proj, and down_proj} mod-
ules from MLP layers. We use a consistent LoRA
configuration of a rank value of 32 and an alpha
value of 64 for fair comparison.

Size of Pretraining Corpus. As continual pre-
training with all the 312K documents from the
PubMed Abstracts Collection (PAC) is computa-
tionally infeasible for LLMs, we perform a hyper-
parameter search to identify an optimal dataset size.
We experiment with various dataset sizes of 10K,
20K, 50K, and 100K, and observe that the perfor-
mance observed for 20K which only takes 6 hours
of pretraining was comparable with the of 100K
setting, which took approximately 40 hrs of pre-
training. Therefore, we continually pretrain over
the BASE model with randomly selected 20K docu-
ments from PAC.
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Dataset Test Set
Size

Token Count of
Reference Summaries

OOV Concentration
Split more than once (in %)

OOV Concentration
Split more than thrice (in %)

Unigram Novelty
(in %)

Llama-2 Llama-3.1 Llama-2 Llama-3.1 Llama-2 Llama-3.1
SD RS SD RS SD RS SD RS

PubMedQA 500 63 25 36.67 38.00 43.68 45.65 4.91 4.65 2.61 2.42 41.32
EBM 424 112 91 38.97 40.90 45.60 46.23 6.65 7.92 3.90 5.17 47.15
BioASQ-M 963 85 69 46.20 50.64 52.03 56.61 9.12 11.04 5.55 7.09 42.58
BioASQ-S 496 73 58 47.12 50.00 52.00 57.15 8.70 9.10 4.76 4.55 4.11

Table 5: Medical text summarization datasets used for evaluation. We have three key observations: (i) BioASQ has
the highest OOV concentration; (ii) EBM has highest novelty concentration; and (iii) EBM has the longest length
reference summaries.

Training Hyperparameters. We use a global
batch size of 32 (on device: 8 with gradient ac-
cumulation: 4), and a learning rate of 1e − 4. In
End-to-End pretraining procedure, LoRA layers of
the model were trained end-to-end for 5 epochs. In
case of Two-Stage pretraining procedure, the em-
bedding layers training phase and keeping LoRA
layers frozen, was carried out for 2 epochs on 10K
PAC samples. Then both the LoRA and embed-
ding layers were trained end-to-end on 20K PAC
samples for 3 epochs. In both the pretraining pro-
cedures, the base layers of the models were kept
frozen throughout the training process.

4 Experimental Results

Table 6 shows the performance comparison of
the different vocabulary adaptation strategies on
Llama-2 and Llama-3.1 models. We report the best
performance among the two continual pretraining
variants of ‘End-to-End’ and ‘Two-Stage’ as previ-
ously described in Section 2.2. The performance
values of the individual settings is added to the Ap-
pendix B. Since Mistral vocabulary size is same
as Llama-2 (32K), and Qwen-2 vocabulary size is
similar as Llama-3.1 (151K and 128K), we add
the Mistral (Table 13) and Qwen-2 (Table 14) re-
sults to the Appendix B. We summarize the key
results for Qwen-2 and Mistral model in RQ7. We
observe that vocabulary adaptation leads to per-
formance improvement in terms of Rouge-L for
Llama-2 and Llama-3.1 in seven out of eight set-
tings (except for Llama-2 on EBM dataset). In
terms of Concept-Score which is a proxy measure
for faithfulness (Zhang et al., 2023), Figure 2 shows
that at least one vocabulary adaptation performs the
best in five out of six settings, except for Llama-3.1
on PubMedQA dataset.

4.1 Discussion of Results for Vocabulary
Adaptation with LLMs

We focus on the fine-grained analysis of LLMs
in high OOV and high novelty data points. The
Rouge-LCS values observed for each such category
are reported in Table 6. In total, we benchmark
an LLM on 48 settings: 32 OOV-related settings
and 16 novelty-related settings. Here we report
the best performing training method in DifficultSD,
DifficultRS and NovelRS setting. The complete re-
sults can be found in Table 11 (for Llama-2) and
Table 12 (for Llama-3.1). The Concept score val-
ues are shown in Figure 2. We find that at least
one vocabulary adaptation strategy improves over
BASE in a total of five out of six settings (LLM-
Dataset pairs). The overall average improvement
for 18.75% for Llama-2 and 14.82% for Llama-3.1
models across datasets. We present two representa-
tive examples from EBM and PubMedQA datasets
using Llama-2 models in Appendix D.

Now, we explore research questions to evalu-
ate LLMs in difficult settings and scenarios where
vocabulary adaptation strategies does not help.

RQ1: Vocabulary adaptation outperform BASE
model on full test data (TestFull). We note that
at least one of the vocabulary adaptation strategies
(best of MEDVOC-LLM and ScafFix) improves
over BASE in five out of eight settings, except
for Llama-3.1 PubMedQA dataset. The average
performance improvement is 3.68% for Llama-2
and 4.57% for Llama-3.1. The methods where we
see improvements are: MEDVOC-LLM (2/5) and
ScafFix (3/5) settings. Thus on the entire test set,
ScafFix, is the best-performing vocabulary adapta-
tion method. It even outperforms CPT-Only in six
out of eight settings by a margin of 2.97%.

RQ2: CPT-Only improves over BASE in high
novelty and OOV concentration. We find that
CPT-Only (Continual Pretraining without any vo-
cabulary adaptation) improves over BASE in four
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Llama-2 Llama-3.1
Model TestFull DifficultRS NovelRS DifficultSD Overall TestFull DifficultRS NovelRS DifficultSD Overall

PubMedQA
BASE 26.33 24.40 19.78 23.53 23.51 28.10 26.87 18.87 24.46 24.58
CPT-only 27.12 28.00 22.21 25.97 25.83 26.62 27.08 21.07 24.52 24.82
MEDVOC 26.50 22.88 20.14 24.35 23.47 27.86 26.23 21.87 24.68 25.16
MEDVOC-LLM 26.90 26.67 20.00 24.49 24.52 27.69 26.67 21.74 26.51 25.65
ScafFix 27.61 28.57 22.22 26.32 26.18 27.67 25.00 22.22 23.85 24.69

EBM
BASE 18.56 16.00 11.20 17.33 15.77 20.04 14.54 11.37 15.79 15.44
CPT-only 19.13 15.87 11.77 19.05 16.46 20.13 17.15 13.33 16.98 16.90
MEDVOC 18.60 15.38 12.50 18.65 16.28 20.31 16.03 12.17 17.93 16.61
MEDVOC-LLM 19.27 14.71 12.90 17.54 16.11 20.75 16.40 13.04 18.39 17.15
ScafFix 18.65 14.71 11.77 17.40 15.63 20.79 17.17 13.80 16.18 16.99

BioASQ-S
BASE 32.12 26.12 20.53 35.72 28.62 35.25 29.60 18.18 27.03 27.52
CPT-only 33.30 29.22 20.00 30.33 28.21 36.01 24.70 17.14 29.41 26.82
MEDVOC 32.26 28.17 18.18 27.40 26.50 37.01 29.79 18.18 32.43 29.35
MEDVOC-LLM 32.40 29.41 20.29 30.33 28.11 37.15 32.89 20.29 37.84 32.04
ScafFix 32.88 29.29 22.22 36.44 30.21 36.70 32.26 20.90 34.15 31.00

BioASQ-M
BASE 28.50 27.27 21.53 28.00 26.33 29.28 26.67 21.51 28.57 26.51
CPT-only 27.22 27.91 20.31 28.57 26.00 27.56 26.09 19.84 28.57 25.52
MEDVOC 24.19 23.26 16.53 26.32 22.73 27.71 27.27 20.46 28.57 26.01
MEDVOC-LLM 24.50 25.00 18.90 28.00 24.10 27.45 27.27 19.05 29.17 25.74
ScafFix 26.16 29.79 21.17 30.00 26.78 28.91 27.59 21.23 30.00 26.94

Table 6: Fine-grained performance evaluation of vocabulary adaptation strategies and baseline modes in terms of
Rouge-L (R-L). The values represent the best among the two continual pretraining strategies of ‘End-to-End’ and
‘Two-Stage’. The ‘Overall’ column represents the average value of TestFull, DifficultRS, NovelRS and DifficultSD.
Vocabulary adaptation (best of MEDVOC-LLM and ScafFix) improves over BASE and CPT-only in 7 out of 8
overall settings.

(Llama-2: 2; Llama-3.1: 2) out of eight high nov-
elty settings. CPT-Only improves over BASE in
11 out of 16 higher OOV settings (Llama-2: 6;
Llama-3.1: 5). However, we observe that at least
one vocabulary adaptation strategy improves over
CPT-Only in high OOV (13 out of 16 settings) and
high novelty (in all 8 setting); thus necessitating
the need for vocabulary adaptation.

RQ3: Vocabulary adaptation helps in high
OOV concentrations in reference summaries
and source documents. We observe that vo-
cabulary adaptation (best of MEDVOC-LLM and
ScafFix) outperforms BASE in fourteen out of
sixteen settings. For these settings, the average
performance improvement over BASE is , 8.74%
and 14.64% for Llama-2 and Llama-3.1 respec-
tively. Thus, MEDVOC-LLM is the best vocabu-
lary adaptation strategy in scenarios of high OOV
concentration in reference summaries and source
documents.

RQ4: Vocabulary adaptation helps in high nov-
elty settings. We observe that vocabulary adap-
tation improves over BASE in six out of eight
high novelty settings. The average performance
improvement (wherever observed) is 11.92% and
18.03% for Llama-2 and Llama-3.1 when com-

pared to BASE. Thus, ScafFix is the best vocabu-
lary adaptation strategy in high novelty settings as
it outperformed in five out of eight settings.

Word BASE tokenization ScafFix tokenization
microbiologically [‘Ġmicrobi’, ‘ologically’] [‘Ġmicro’, ‘biological’,

‘ly’]
inhibitory [‘Ġinhib’, ‘itory’] [‘Ġ’, ‘inhibitor’, ‘y’]
chronically [‘Ġchron’, ‘ically’] [‘Ġ’, ‘chronic’, ‘ally’]
antibacterial [‘Ġantib’, ‘acterial’] [‘Ġanti’, ‘bacteria’, ‘l’]

Table 7: Samples of words from PubMedQA corpus.
For each word, we observe that ScafFix tokenization pre-
serves the morphological boundary while tokenization,
unlike BASE tokenization where subwords cross mor-
phological boundaries (Bauwens and Delobelle, 2024).

RQ5: Comparison of added vocabulary sizes
among vocabulary adaptation strategies. The
details of the added vocabulary and fragment score
for the different vocabulary adaptation strategies
are provided in Table 8 (Appendix A). We observe
that ScafFix reduces fragment score by 30.83%
over BASE by adding the minimum amount of
added vocabulary terms as compared to the MED-
VOC and MEDVOC-LLM. The lowest vocabulary
size due to removal of scaffolding tokens leads to
a significant drop in the number of under-trained
tokens in the LLM vocabulary. This makes the
training phase less noisy and yields superior perfor-
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Figure 2: Concept Score (CSr) observed for (a) PubMedQA; (b) EBM; and (c) BioASQ-M averaged over
DifficultSD, DifficultRS, and NovelRS setting. At least one vocabulary adaptation strategy imprves over BASE
in a total of 5 out of 6 comparisons. The overall average improvement for 18.75% for Llama-2 and 14.82% for
Llama-3.1 models across datasets.

mance during inference.

RQ6: Vocabulary adaptation does not help
much in case of extractive summaries, low OOV
concentration and low novelty. We note that
all the vocabulary adaptation techniques struggle
to outperform both BASE and CPT-Only in Pub-
MedQA (Llama-3.1), BioASQ-S (Llama-2), and
BioASQ-M (Llama-2 and Llama-3.1). When com-
pared in the entire test set; there is a performance
drop of 1.39% across these two settings. This may
be because PubMedQa and BioASQ-S have low
novelty. Specifically, for BioASQ-S, the unigram
novelty is just 4.11% (see Table 5), therefore, the
high novelty threshold for top-ten percentile was
35%. Thus, we take the average of EBM and Pub-
MedQA high novelty values of 60%. This results
in vocabulary adaptation outperforming BASE in
high novelty setting of BioASQ-S.

In case of BioASQ-M, we note that although it
is a dataset with higher unigram novelty, the sum-
maries where ScafFix fails have a higher Rouge-L
overlap with the Source Document as compared
to the summaries where ScafFix does better than
BASE, thus making the inference easier irrespec-
tive of OOV and Novelty concentration. We pro-
vide a detailed error analysis observed in the per-
formance gap in Appendix B (Table 10)

RQ7: Proposed vocabulary adaptation methods
generalizes to other LLMs such as Qwen-2 and
Mistral. In case of Qwen-2 (Table 14), we ob-
serve that at least one vocabulary adaptation strate-
gies improve over BASE and CPT-Only in 7 out of
12 comparisons. In case of Mistral (Table 13), we

observe that at least one of the vocabulary adapta-
tion strategies improved over BASE and CPT-Only
in one out of 12 comparisons. In case of both the
models (details in Appendix B), we observe a simi-
lar trend with vocabulary adaptation not helping in
case of low OOV and novelty concentration (specif-
ically in BioASQ-S) as we observed in RQ6. These
findings highlight that our results are potentially
generalizable to multiple LLMs.

4.2 Human Evaluation

We randomly select 30 test data points uniformly
across the three datasets and two models that have
higher expert OOV concentration. We use the Pro-
lific platform to recruit medical experts for anno-
tating summary pairs of ScafFix model and BASE
across three aspects (Fabbri et al., 2021; Zhang
et al., 2023; Balde et al., 2024b) namely relevance,
coherence (on a Likert scale of 1 to 5), and faithful-
ness (binary). Each annotator was given 30 minutes
to evaluate 10 summaries and was compensated at
a rate of 8 UK pounds per hour (see Appendix C for
more details), and each summary par was evaluated
by three annotators. Figure 3 shows the human eval-
uation results where the ScafFix method generates
more faithful summaries (93.34% versus 83.34%
of summaries are faithful), and more relevant sum-
maries, where 93.34% of data points get a score
≥ 4 in Likert scale, as compared to 70% by BASE.

5 Related Works

Vocabulary Expansion in LLMs. Recent re-
search has focused on enhancing large language
models (LLMs) through domain-specific vocabu-
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Figure 3: Human evaluation scores in high OOV concen-
tration on ‘End-to-End’ continual pretraining strategy.
Vocab corresponds to ScafFix model which produces
more relevant, coherent, and faithful summaries during
human evaluation with medical experts.

lary optimization. Liu et al. (2024) introduces
VEGAD, an adaptive method for selecting an opti-
mal subset of domain vocabulary, which enhances
performance on both specialized and general tasks,
validated on Chinese datasets. Similarly, Gao et al.
(2024) introduced VE-KD, a method combining
vocabulary expansion and knowledge distillation to
train efficient domain-specific language models for
BioBERT and PubMedBERT on biomedical tasks.
These approaches align with broader efforts, such
as, Chatlaw (Cui et al., 2024a), an AI legal assis-
tant, that employed a knowledge graph-enhanced
mixture-of-experts model to address legal domain
challenges, and (Cui et al., 2024b), who devel-
oped efficient text encoding strategies for Chinese
LLMs. Similar efforts have been put in other lan-
guages (Nag et al., 2024; Tejaswi et al., 2024; Ya-
maguchi et al., 2024). However, none of the works
benchmarked the effect in the fine-grained manner
that we aimed to show in this study.

Over-fragmentation in Medical domain. Over-
fragmentation (spliting of domain words in more
than one subword) in tokenization is a signifi-
cant challenge in adapting large language models
(LLMs) to the medical domain due to specialized
terminology. Si et al. (2019) highlighted the lim-
itations of traditional tokenization on the task of
clinical concept extraction where they show mod-
els like BERT poorly toknize medical named en-
tities. Nguyen et al. (2019) emphasized the im-
pact of lexical segmentation on transformer-based
models and suggested that not only using a domin-
specific vocabulary helps but also a continual pre-
training phase helps. Yuan et al. (2022) introduced
BioBART and Labrak et al. (2024) introduced

BioMistral, biomedical-specific generative model
designed to address domain-specific tokenization
challenges that outperformed various SoTA meth-
ods on different kinds of task like summarization
and question-answering. Liu et al. (2023) pro-
posed task-adaptive tokenization to enhance long-
form text generation by dynamically adjusting tok-
enization for domain-specific semantics by going
beyond word boundaries during tokenization. Our
work builds on these advancements by benchmark-
ing the effect of refining tokenization on recent
Llama-2, Llama-3, Mistral, and Qwen-2 models.

6 Conclusion

This work is a first step towards understanding how
vocabulary adaptation strategies effect the perfor-
mance of general-purpose LLMs in medical text
summarization. We first show that general-purpose
LLMs fail in certain challenging generation scenar-
ios where reference summaries have high OOV con-
centration and high novelty. We then benchmark
the performance of three vocabulary adaptation
strategies on four models: Llama-2 7B, Mistral 7B,
Qwen-2 7B, and Llama-3.1 8B model; over three
biomedical summarization datasets and two contin-
ual pretraining strategies. Llama-3.1 and Qwen-2
even with a vocabulary size of around 128K and
151K tokens, still faces the over-fragmentation is-
sue with medical words, and vocabulary adaptation
is shown to help improve the LLM summarization
performance. Medical experts find that vocabulary
adaptation improves the relevance, coherence and
faithfulness of medical summaries. We make the
codebase available for reproducibility purposes.

7 Limitations

We identify two main limitations of this work.
Firstly, because of hardware constraints we could
not explore much larger variants (like 13B and 70B)
of the models considered in the study. Second, we
note that all the results provided in this paper are
generated by applying LoRA during the pretraining
phase. This might make a difference when replicat-
ing the results with full-scale fine-tuning without
any parameter efficient fine-tuning strategies.

8 Ethics Statement and Broader Impact

It is a well known fact that LLMs are often prone to
hallucinations, producing outputs that could not be
verified as-is from the source context without any
domain-specific knowledge. While the proposed
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methods here does improve faithfulness, the quality
of the summaries generated is still not ready for de-
ployment to the public without evaluating the safety
perspective of such responses. We believe more re-
search is needed to align the outputs of these LLMs
for such high-stake domains like healthcare where
a single misinformation (or disinformation) could
lead to drastic consequences.
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SummEval: Re-evaluating summarization evaluation.
Transactions of the Association for Computational
Linguistics, 9:391–409.

Pengju Gao, Tomohiro Yamasaki, and Kazunori Imoto.
2024. Ve-kd: Vocabulary-expansion knowledge-
distillation for training smaller domain-specific lan-
guage models. In Findings of the Association for
Computational Linguistics: EMNLP 2024, pages
15046–15059.

Suchin Gururangan, Ana Marasović, et al. 2020. Don’t
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A Experimental Setup

Vocabulary Sizes. We report the vocabulary
sizes along with the resultant fragment score in
Table 8.

Model Llama-2 Mistral Llama-3.1 Qwen-2
|V| FragSr |V| FragSr |V| FragSr |V| FragSr

PubMedQA
CPT-Only 32000 2.53 32000 2.58 128256 2.29 151646 2.29
MEDVOC 38245 1.48 37642 1.55 129078 1.21 152441 1.21
MEDVOC-
LLM

34572 1.66 34219 1.73 128808 1.25 152131 1.25

ScafFix 32200 2.14 32266 2.20 128456 1.31 152000 1.28
EBM

CPT-Only 32000 2.65 32000 2.75 128256 2.33 151646 2.33
MEDVOC 42836 1.48 43908 1.61 131231 1.12 154092 1.13
MEDVOC-
LLM

34572 1.66 36252 1.80 130253 1.22 153468 1.23

ScafFix 32150 1.83 32060 2.54 128456 1.37 152062 1.35
BioASQ

CPT-Only 32000 2.98 32000 2.69 128256 2.44 151646 2.65
MEDVOC 43194 1.93 46502 1.44 133099 1.24 155518 1.26
MEDVOC-
LLM

37399 2.18 37506 1.65 130966 1.30 154612 1.30

ScafFix 32300 2.43 32193 2.39 128506 1.56 152098 1.44

Table 8: The final vocabulary sizes (|V|) along with the
resultant fragment score (FragSr) observed on Medical
OOV words. MEDVOC, MEDVOC-LLM, and ScafFix
are the best vocabulary adaptation scheme which has
the least vocabulary sizes and decent fragment score.

Prompt
You are a medical expert. You are given a query and query-relevant
information as inputs. Your task is to summarize this information. The
summary should be concise, include only non-redundant, query-relevant
evidence, and be approximately 100 words long. Use the provided
examples to guide word choice.

–n icl examples concatenated using ‘##’–
Query {i}: {Train-Query}
Document {i}: {Train-Source Document}
Summary {i} : {Train-Summary}
##

–Test Example–
Query: {Test-Query}
Document: {Test-Source Document}
Summary:

Table 9: Prompt Template used to prompt the language
models for the task of query focused summarization.

Prompts used. We use the prompt template in-
spired from ClinSumm (Van Veen et al., 2024) and
Zhang et al. (2025) as shown in Table 9.

B Results

Metric Subset-1 Subset-2
Llama-2

Difficult-RS Concentration 9.78% 10.77%
Novel-RS Concentration 40.65% 41.92%
Rouge-LCS overlap between source and reference 38.17 35.65

Llama-3.1
Difficult-RS Concentration 7.47% 8.81%
Novel-RS Concentration 39.46% 42.78%
Rouge-LCS overlap between source and reference 39.52 34.27

Table 10: Difference of characteristics between in-
stances where BASE has better Rouge-LCS than Scaf-
Fix (Subset-1) and instances where ScafFix has higher
Rouge-LCS than BASE (Subset-2). The instances
where BASE has better Rouge-LCS than ScafFix
(Subset-1) have lesser values of Difficult-RS Concen-
tration as well as Novel-RS Concentration, but higher
values of Rouge-LCS overlap compared to Subset-2.

Comparing Continual Pretraining Strategies for
Llama-2 and Llama-3.1. In Table 11, we report
the performance we observe using two different
continual pretraining strategies on Llama-2 and
in Table 12 we show performance for Llama-3.1
model. In case of Llama-2 the best pretraining
strategy was Two-Stage and and for Llama-3.1 was
End-To-End.

Mistral and Qwen results. We present the Mis-
tral results in Table 13 and Qwen results in Ta-
ble 14.

In case of Qwen-2, we observe that at least
one vocabulary adaptation strategies improve over
BASE and CPT-Only in 7 out of 12 comparisons
considered in the main text (DifficultSD, DifficultRS,
NovelRS). Here, we observe a similar trend with vo-
cabulary adaptation not helping in case of low OOV
and novelty concentration (specifically in BioASQ-
S) as we observed in main text (RQ6). The best
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End-To-End Two-Stage
TestFull DifficultSD DifficultRS NovelRS AllSD AllRS TestFull DifficultSD DifficultRS NovelRS AllSD AllRS

PubMedQA
BASE 26.33 23.53 24.40 19.78 25.46 27.45 26.33 23.53 24.40 19.78 22.64 27.45
CPT-only 27.12 25.97 28.00 22.21 27.86 27.59 27.11 25.00 26.92 21.24 24.07 26.67
MEDVOC 26.50 24.35 22.88 20.14 24.59 27.70 26.39 24.00 24.82 20.88 22.22 26.23
MEDVOC-LLM 26.90 24.49 26.67 20.00 25.27 27.12 27.30 25.54 27.45 20.84 21.43 28.89
ScafFix 27.61 26.32 28.57 22.22 25.83 28.57 27.05 25.00 24.75 21.30 21.28 30.19

EBM
BASE 18.56 17.33 16.00 11.20 14.95 15.69 18.56 17.33 16.00 11.20 14.95 15.69
CPT-only 18.92 18.18 15.19 11.77 14.64 14.04 19.13 19.05 15.87 11.77 14.29 13.95
MEDVOC 18.09 18.18 14.63 11.91 15.31 14.74 18.60 18.65 15.38 12.50 15.83 14.29
MEDVOC-LLM 18.77 17.20 14.55 12.50 14.45 15.27 19.27 17.54 14.71 12.90 17.55 14.81
ScafFix 18.67 16.67 15.39 13.80 15.27 15.63 18.65 17.40 14.71 11.77 15.47 14.71

BioASQ-M
BASE 28.50 28.00 27.27 21.53 26.71 27.27 28.50 28.00 27.27 21.53 26.71 27.27
CPT-only 27.22 28.57 27.91 20.31 24.44 27.91 26.73 29.41 27.91 19.80 25.20 28.57
MEDVOC 24.19 26.32 23.26 16.53 23.08 26.09 24.47 28.07 21.74 16.06 24.19 24.57
MEDVOC-LLM 24.50 28.00 25.00 18.90 23.76 26.38 25.15 27.59 25.00 16.85 23.17 24.78
ScafFix 26.16 30.00 29.79 21.17 22.84 28.07 26.00 28.57 28.57 19.53 24.10 26.49

BioASQ-S
BASE 32.12 35.72 26.32 20.59 33.33 27.92 32.12 35.72 26.12 20.53 33.33 27.92
CPT-only 33.09 29.35 25.53 19.64 23.65 24.12 33.30 30.33 29.22 20.00 30.30 21.92
MEDVOC 32.34 30.26 29.41 20.29 29.41 22.47 32.26 27.40 28.17 18.18 26.09 23.53
MEDVOC-LLM 32.75 34.52 30.30 29.29 33.33 24.47 32.40 30.33 29.41 20.29 27.03 21.53
ScafFix 33.34 36.44 31.25 19.05 27.03 24.00 32.88 36.44 29.29 22.22 33.33 24.00

Table 11: Performance comparison in terms of Rouge-L (R-L) between the two continual pretraining strategies of
‘End-to-End’ and ‘Two-Stage’ on Llama-2 7B model.

performing continual pretraining strategy was End-
to-End.

In case of Mistral, we observe that none of the vo-
cabulary adaptation strategies improved over BASE
and CPT-Only in one out of 12 comparisons con-
sidered in the main text (DifficultSD, DifficultRS,
NovelRS). Here, we observe a similar trend with vo-
cabulary adaptation not helping in case of low OOV
and novelty concentration (specifically in BioASQ-
S) as we observed in main text (RQ6). The best
performing continual pretraining strategy was Two-
stage for all the datasets except EBM.

Error Analysis for Performance Gap in BioASQ-
M. We split the test set into two subsets: (i)
Subset-1: instances where BASE has better Rouge-
LCS than ScafFix (512 data points), and (ii) Subset-
2: instances where ScafFix has higher Rouge-LCS
than BASE (444 data points). We analyzed charac-
teristics like fraction of Medical OOV words in Ref-
erence Summary (i.e., Difficult-RS Concentration),
fraction of novel unigrams in reference summary
(i.e., Novel-RS Concentration) and content over-
lap (measured by the standard metric Rouge-LCS)
between source document and reference summary
(i.e., Rouge-LCS overlap between source and ref-
erence). The differences between the two subsets
in terms of these characteristics are compared in
Table 10.

In terms of understanding the error, we made a
key observation. The instances where BASE has
better Rouge-LCS than ScafFix (Subset-1) have

lesser values of Difficult-RS Concentration as well
as Novel-RS Concentration, but higher values of
Rouge-LCS overlap compared to Subset-2. Thus,
for the instances that are less novel, have less OOV
concentration, and are easier to infer, ScafFix is
less helpful. This result from error analysis is also
in line with the comparison of fine-grained set-
tings (Table 6) reported in the main text, where
we see general improvements for both Llama-2 and
Llama-3.1 models for instances with higher OOV
and higher novelty settings.

C Human Evaluation

We conducted our survey on Prolific platform3

where we hired 9 medical experts from the plat-
form across globe. All the annotators were shown
10 random samples from a pool of 30 summaries
where the order of summaries was randomized and
blinded (annotators have no idea which summary
came from which model). The median time to com-
plete was set at 30 mins and the annotators were
paid at the rate of 8 UK pounds per hour based on
the amount of time they took. We did not collect
any PII from the participants explicitly other than
what was provided by the platform. The task was
conducted using Google Forms, with participants
being shown a consent notice beforehand. The
results are shown in Figure 3.

Participation Criteria. The filtering criteria for
participants were kept same as that of MED-

3https://www.prolific.com/
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End-To-End Two-Stage
TestFull DifficultSD DifficultRS NovelRS AllSD AllRS TestFull DifficultSD DifficultRS NovelRS AllSD AllRS

PubMedQA
BASE 28.10 24.46 26.87 18.87 28.89 29.21 28.10 24.46 26.87 18.87 29.23 32.10
CPT-only 26.62 24.52 27.08 21.07 25.93 26.74 27.05 27.71 26.97 19.64 26.71 28.65
MEDVOC 27.86 24.68 26.23 21.87 25.97 31.12 27.17 25.76 27.12 19.25 28.06 29.62
MEDVOC-LLM 27.69 26.51 26.67 21.74 25.53 30.43 27.15 25.19 26.51 19.86 28.45 28.51
ScafFix 27.67 23.85 25.00 22.22 25.00 29.16 27.25 26.37 26.42 21.16 28.16 28.41

EBM
BASE 20.04 15.79 14.54 11.37 15.62 15.18 20.04 15.79 14.54 11.37 15.62 15.18
CPT-only 20.13 16.98 17.15 13.33 13.79 16.67 20.20 17.24 14.94 11.90 14.81 13.82
MEDVOC 20.31 17.93 16.03 12.17 13.56 16.87 20.45 17.65 15.56 13.34 16.36 15.78
MEDVOC-LLM 20.75 18.39 16.40 13.04 16.13 17.05 20.42 17.65 15.63 14.82 15.79 15.38
ScafFix 20.79 16.18 17.17 13.80 15.39 14.29 20.50 17.07 16.85 13.04 16.13 14.76

BioASQ-M
BASE 29.28 28.57 26.67 21.51 25.54 23.77 29.28 28.57 26.67 21.51 25.53 23.77
CPT-only 27.56 28.57 26.09 19.84 25.54 23.53 27.25 28.57 29.79 19.14 24.56 27.73
MEDVOC 27.71 28.57 27.27 20.46 24.39 25.86 27.18 30.00 26.93 19.33 24.56 26.84
MEDVOC-LLM 27.45 29.17 27.27 19.05 25.00 26.09 27.92 30.43 29.03 20.97 25.00 27.36
ScafFix 28.91 30.00 27.59 21.23 25.89 26.45 27.86 28.13 28.57 20.94 24.10 27.38

BioASQ-S
BASE 35.25 27.03 29.60 18.18 30.15 27.92 35.25 27.03 29.60 18.18 30.15 27.92
CPT-only 37.60 42.42 30.04 18.67 42.02 31.58 36.01 29.41 24.70 17.14 31.79 28.57
MEDVOC 37.00 31.25 27.03 20.29 30.38 28.92 37.01 32.43 29.79 18.18 32.43 31.11
MEDVOC-LLM 27.43 35.09 29.34 20.29 33.00 30.37 37.15 37.84 32.89 20.29 31.01 35.04
ScafFix 37.22 37.04 33.34 20.34 35.91 35.02 36.70 34.15 32.26 20.90 33.74 33.35

Table 12: Performance comparison in terms of Rouge-L (R-L) between the two continual pretraining strategies of
‘End-to-End’ and ‘Two-Stage’ on Llama-3.1 8B model

VOC (Balde et al., 2024b):

1. Age: ≥ 25,

2. Primary Language: English,

3. Highest education level completed: Gradu-
ate degree (MA/MSc/MPhil/other), Doctorate
degree (PhD/other), and

4. Subject: Medicine, Health and Medicine,
Biomedical Sciences.

Annotation Guidelines. The annotations were
assessed across three key dimensions as outlined
by Fabbri et al. (2021): Coherence, Relevance,
and Factual Consistency.

Coherence evaluates the structural integrity of
the summaries, focusing on whether the sentences
are logically connected and contextually aligned.
Relevance measures the informativeness of the
summaries, considering the provided query and
the context source document to judge the rele-
vance. Faithfulness examines the accuracy of the
stated facts, figures, and numerical data within the
summaries, ensuring they can be directly verified
against the input source. Notably, even if a sum-
mary presents accurate information, it is considered
factually inconsistent if the claims cannot be sub-
stantiated solely by the given input. Relevance and
Coherence are judged on a scale of 1-5; whereas
factual consistency is binary (Yes/No).

To make the guidelines clear, we provide few ex-
amples of positive and negative examples to make

people aware of what is a relevant, coherent, and
factually consistent document vs what is not. The
pdf is present in the github codebase.
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End-To-End Two-Stage
TestFull DifficultSD DifficultRS NovelRS AllSD AllRS TestFull DifficultSD DifficultRS NovelRS AllSD AllRS

PubMedQA
BASE 25.40 27.04 28.32 19.48 22.97 29.29 25.40 27.04 28.32 19.48 22.97 29.29
CPT-Only 25.00 25.00 25.23 19.14 24.64 27.80 25.51 25.28 26.67 19.84 24.81 28.37
MEDVOC 24.49 24.09 26.67 17.56 23.88 28.27 24.64 24.99 25.01 18.85 22.79 26.49
MEDVOC-LLM 25.45 25.05 24.58 19.00 24.19 29.62 24.47 24.06 24.25 19.20 23.49 28.10
ScafFix 25.40 24.04 25.27 18.67 24.62 27.92 24.56 24.78 24.85 17.79 23.14 28.29

EBM
BASE 17.43 17.86 17.06 11.49 16.87 12.33 17.43 17.86 17.06 11.49 16.87 13.33
CPT-Only 17.15 17.70 16.49 12.12 15.85 13.79 17.39 17.82 15.59 11.32 14.29 12.77
MEDVOC 17.63 16.09 14.04 11.24 15.46 12.99 17.10 15.83 14.61 13.01 15.38 13.70
MEDVOC-LLM 17.19 17.40 14.77 11.11 15.19 13.33 16.85 16.22 15.48 12.66 15.19 12.50
ScafFix 16.80 17.19 14.98 11.19 15.22 13.11 17.21 16.87 13.30 11.99 13.33 12.90

BioASQ-M
BASE 25.97 28.21 25.64 21.88 26.23 26.67 25.97 28.21 25.64 21.88 26.23 26.67
CPT-Only 22.73 25.64 25.00 21.05 23.38 23.53 23.53 27.03 24.56 21.54 23.26 24.56
MEDVOC 21.54 23.68 17.02 16.67 22.20 21.43 21.95 25.30 15.38 17.02 22.95 22.22
MEDVOC-LLM 22.73 24.69 20.00 16.18 23.08 22.73 22.64 26.67 19.23 17.91 24.00 22.86
ScafFix 22.73 24.39 19.35 18.52 22.58 23.81 20.69 23.53 17.02 16.33 22.22 21.28

BioASQ-S
BASE 35.44 53.59 40.00 28.57 40.00 40.00 35.44 53.59 40.00 28.57 40.00 40.00
CPT-Only 28.57 31.01 23.58 22.22 28.57 25.81 29.63 34.14 28.57 21.15 32.26 28.57
MEDVOC 28.57 31.16 26.32 19.15 27.03 27.78 27.78 29.61 25.93 19.61 28.00 23.81
MEDVOC-LLM 28.17 35.19 27.91 20.22 35.90 29.63 27.27 34.22 26.09 20.51 30.30 26.67
ScafFix 30.00 33.52 29.63 25.00 32.00 33.33 24.69 31.95 24.24 20.00 22.22 25.00

Table 13: Performance comparison in terms of Rouge-L (R-L) between the two continual pretraining strategies of
‘End-to-End’ and ‘Two-Stage’ on Mistral 7B model.

End-To-End Two-Stage
TestFull DifficultSD DifficultRS NovelRS AllSD AllRS TestFull DifficultSD DifficultRS NovelRS AllSD AllRS

PubMedQA
BASE 24.00 22.22 24.14 18.82 23.74 30.00 24.00 22.22 24.14 18.82 23.74 30.00
CPT-only 24.65 27.85 25.39 17.50 24.85 25.81 24.73 23.88 24.78 17.65 25.41 25.64
MEDVOC 24.59 23.08 25.93 18.37 23.21 26.32 24.89 25.45 26.20 18.18 23.57 25.00
MEDVOC-LLM 25.00 25.00 25.90 19.50 24.83 26.67 25.00 25.00 27.06 16.87 23.47 27.60
ScafFix 24.66 25.58 25.65 18.60 23.81 25.54 25.00 25.00 26.32 18.87 25.00 26.32

EBM
BASE 17.52 16.49 14.04 11.43 16.07 14.46 17.52 16.49 14.04 11.43 16.07 14.46
CPT-only 17.60 15.38 15.17 11.86 16.42 13.91 17.80 14.93 14.89 11.51 14.77 13.95
MEDVOC 17.54 16.13 16.13 12.31 16.67 15.62 17.43 15.87 15.47 12.50 16.75 15.15
MEDVOC-LLM 17.34 16.13 14.70 12.60 16.16 15.15 17.65 17.93 15.39 11.76 16.39 15.15
ScafFix 17.78 17.24 17.64 13.33 16.98 17.58 17.67 17.24 16.67 12.04 16.07 17.14

BioASQ-M
BASE 25.45 30.00 27.27 19.67 26.09 27.73 25.45 30.00 27.27 19.67 26.09 27.73
CPT-only 23.88 28.57 26.10 18.52 25.25 26.90 24.56 28.57 25.00 17.86 25.35 26.90
MEDVOC 25.00 30.20 26.67 20.00 26.67 26.85 24.49 28.57 25.00 19.05 24.70 26.32
MEDVOC-LLM 24.30 28.57 25.71 19.23 25.35 27.27 24.34 28.57 26.67 20.00 25.00 26.80
ScafFix 24.49 28.24 26.23 19.67 25.00 27.20 24.69 28.57 26.67 20.00 25.00 27.27

BioASQ-S
BASE 36.19 45.31 45.24 28.57 41.89 43.17 36.19 45.31 45.24 28.57 41.89 43.17
CPT-only 32.43 37.89 28.53 24.49 35.59 29.18 31.59 31.50 32.57 25.00 34.46 29.90
MEDVOC 31.91 35.56 32.46 24.62 32.95 31.29 31.59 33.69 31.86 25.00 33.81 30.25
MEDVOC-LLM 32.14 30.49 30.94 26.32 33.81 30.77 32.14 37.97 31.84 24.56 36.18 34.29
ScafFix 32.00 39.36 36.94 26.67 37.23 31.01 31.58 38.28 32.13 26.00 36.04 29.10

Table 14: Performance comparison in terms of Rouge-L (R-L) between the two continual pretraining strategies of
‘End-to-End’ and ‘Two-Stage’ on Qwen2-7B model.
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D Representative Examples

We present examples from PubMedQA and EBM
datasets where vocabulary adaptation strategy Scaf-
Fix helped improve the performance over BASE in
higher OOV concentration settings from Llama-2
models.

Input
Query: What medication best prevents migraine in children?
PubMed Abstract: In a prospective study we compared propranolol, placebo,
and self-hypnosis in the treatment of juvenile classic migraine. Children aged 6
to 12 years with classic migraine who had no previous specific treatment were
randomized into propranolol (at 3 mg/kg/d) or placebo groups for a 3-month
period and then crossed over for 3 months. After this 6-month period, each
child was taught self-hypnosis and used it for 3 months. Twenty-eight patients
completed the entire study. The mean number of headaches per child for 3
months during the placebo period was 13.3 compared with 14.9 during the
propranolol period and 5.8 during the self-hypnosis period. Statistical analysis
showed a significant association between decrease in headache frequency and
self-hypnosis training (P = .045). There was no significant change in subjective
or objective measures of headache severity with either therapy.

Reference Summary (OOV Concentration: 17.72%)
A comparative randomized controlled trial with multiple crossovers involving 33
children found that a self-hypnosis placebo decreased mean headache frequency
from 13.3 per 3-month interval to 5.8 (P=.045), but found propranolol no
different than placebo. Propranolol was also studied in a 3-armed randomized
controlled trial in comparison with flunarizine-a drug likely to be efficacious
and placebo.

BASE Summary (Rouge-L: 24.10)
Self-hypnosis was associated with a significant decrease in headache frequency
in a single randomized controlled trial of 28 children.

ScafFix Summary (Rouge-L: 40.00)
In a single randomized controlled trial with crossover design in 28 children,
self-hypnosis reduced headache frequency from a mean of 13.3 attacks/month
to 5.8 attacks/month vs. no change for placebo (P =.045).

Table 15: Example from EBM dataset comparing sum-
mary generated using vocabulary adaptation method
ScafFix with BASE.

Input
Query: Should serum pancreatic lipase replace serum amylase as a biomarker
of acute pancreatitis?
PubMed Abstract: Serum pancreatic lipase may improve the diagnosis of
pancreatitis compared to serum amylase. Both enzymes have been measured
simultaneously at our hospital allowing for a comparison of their diagnostic
accuracy. Seventeen thousand five hundred and thirty-one measurements of ei-
ther serum amylase and or serum pancreatic lipase were made ... One thousand
eight hundred and twenty-five patients had either elevated serum amylase and or
serum pancreatic lipase. The medical records coded for pancreatitis in a further
55 whose enzymes were not elevated. Three hundred and twenty of these had
radiological evidence of acute pancreatitis. Receiver operator characteristic
analysis of the initial sample from patients received in the Emergency Depart-
ment showed improved diagnostic accuracy for serum pancreatic lipase (area
under the curve (AUC) 0.948) compared with serum amylase (AUC, 0.906,
P<0.05) ...

Reference Summary (OOV Concentration: 47.09%)
It is concluded that serum pancreatic lipase is a more accurate biomarker of
acute pancreatitis than serum amylase.

BASE Summary (Rouge-L: 29.17)
Serum pancreatic lipase may improve the diagnosis of pancreatitis compared
to serum amylase. Both enzymes have been measured simultaneously at our
hospital allowing for a comparison of their diagnostic accuracy.

ScafFix Summary (Rouge-L: 76.47)
Serum pancreatic lipase is a more sensitive and specific biomarker of acute
pancreatitis than serum amylase.

Table 16: Example from PubMedQA dataset comparing
summary generated using vocabulary adaptation method
ScafFix with BASE. Interestingly, BASE model suffered
from LEAD-bias (See et al., 2017) (picking sentences
from the front of the document as the summary) and
missed the biomarker word completely.
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